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Executive Summary 

The information contained in this report is organized as three separate but related research studies. Collectively, 
these studies investigate the impact of climate change and sea level rise on transportation infrastructure within 
portions of the Hampton Roads region of Virginia. 

The first report “Impact of Sea Level Rise on Roadways in the Hampton Roads Region of Virginia” emphasizes 
the vulnerability of roadways to sea level rise in Norfolk and Virginia Beach. The research team used geospatial 
data and geographic information system (GIS) data processing techniques to estimate the roadways that would 
be vulnerable to flooding due to various sea level rise scenarios. The results are presented for two different 
events: 1) high tide conditions and 2) 100-yr storm surge conditions. The results of the study indicated that by 
2100 with intermediate sea level rise predictions, more than 10% of major roadways will be inundated at high 
tide. Additionally, more than 70% of roadways will be inundated in the same sea level scenario during a 100 
year storm surge event. The results of the study also make use of traffic count data in order to identify several 
critical roadways segments that are vulnerable to flooding with sea level rise scenarios over the next century. 
These roadways should be the focus of further studies to verify their flood risks and explore options for 
reducing these flood risks. 

The second report “Impact of Climate Change on Design Rainfall Events in Hampton Roads, VA” explored 
various future precipitation scenarios in order to better understand climate change impacts to design rainfall 
events. Precipitation data from weather stations as well as from downscaled regional or global climate and 
weather models were analyzed for the Hampton Roads region. The precipitation modeling techniques were 
compared to actual precipitation data to determine the percent biased of each model. The percent biased could 
be used in the future to correct the model output data. The model, GFDL-ESM2M, which had one of the lowest 
percent biased was then used to model several climate change scenarios. The scenarios indicated increases in 
precipitation for much of the Hampton Roads district under the RCP4.5 scenario and for the entire region for 
the RCP8.5 scenario. The Eastern Shore is projected to have the lowest increase, while Suffolk is projected to 
have the highest increase. 

The third report “Effect of rain gauge proximity on rain estimation for problematic urban coastal watersheds in 
Virginia Beach, VA” looks at the question of how rainfall variability within Virginia Beach impacts the ability 
to accurately measure rainfall using gauging stations. Available rain gauge networks were inventoried and 
rainfall observations at a 15 minute time step were gathered for the 20 days over a three year period with the 
highest rainfall totals. City officials assisted in identifying seven problem areas for flooding within Virginia 
Beach. A high-resolution digital elevation model (DEM) was used to derive watersheds for each of these 
problem areas. Experiments were conducted to better understand how local rainfall observations for each of the 
problem area watersheds impacted the ability to accurately predict the rainfall that fell on the watershed. The 
findings showed that having a gauge within 1km of the watershed greatly reduced the precipitation prediction 
error, especially for a 15 minute time step. This results suggest the need for a dense rainfall monitoring network 
for coastal cities like Virginia Beach where flooding risks are increasing due to sea level rise and climate 
change. 

Following this Executive Summary, each subreport is presented independently along with a title page listing the 
authors of that subreport. The University of Virginia completed the first and third subreports, while Virginia 
Tech completed the second subreport. 
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Problem 
Globally, millions of people are affected by coastal flooding each year (Prime et al., 2015). Recent 

flooding events in the United States have caused significant social and economic damage to coastal cities. 
Hurricanes Katrina (Kates et al., 2006) and Sandy (Galarneau et al., 2013) in New Orleans, Louisiana and New 
York City, New York respectively, resulted in more than 1,500 fatalities and $100 billion in damage. As sea 
levels rise, flooding events in coastal cities are likely to occur more frequently and with greater severity 
(Nicholls and Cazenave, 2010). While the destruction caused by major storm events is well known, more 
frequent, but less severe floods, or ‘nuisance floods,’ are already disrupting transportation systems (Ezer and 
Atkinson, 2014). These smaller disruptions have a high cumulative economic and social cost to coastal cities 
and are increasing in frequency (Suarez et al., 2005; Sweet et al., 2014). 

Flooding due to climate change is likely to significantly damage valuable transportation infrastructure 
systems (Kates et al., 2006; Meyer and Weigel, 2011). In the United States alone, transportation assets were 
valued at over $7 trillion in 2012, with over half of these assets being publically owned (U.S. Department of 
Transportation, 2013). An important first step in adapting to increased flood risk is to identify areas most 
vulnerable to flooding so that physical and economic resource spending can be prioritized (El Raey et al., 1999; 
Lambert et al., 2013; Roberts, 2010). Roads and bridges which a) are susceptible to flooding due to low 
elevations and b) have high traffic volumes are of special concern and, for the purposes of this paper, are 
referred to as critical road segments. 

Prior studies have addressed the vulnerability of transportation networks to sea level rise. Oswald and 
Treat (2013) developed and applied a framework for modeling transit inundation using GIS data. Similarly, 
Bloetscher et al. (2014) used down-scaled elevation data, including high-resolution LiDAR data, to identify 
vulnerable transportation infrastructure. Instead of focusing on the physical infrastructure itself, Suarez et al. 
(2005) modeled flood impacts on a transportation system’s performance using lost trips and delay times as 
measures of disruption. 

Approach 
This study adds to the current literature by combining high resolution elevation data with traffic data to 

produce detailed information of critical roadways in the Hampton Roads region of Virginia. Mitchell et al. 
(2013) and Kleinosky et al. (2006) performed studies of potential flooding effects on this region with a more 
general focus, rather than specifically considering transportation. Wu et al. (2013) focused on the combined 
impact of sea level rise and hurricanes on Hampton Roads transportation infrastructure. This study identifies not 
only vulnerable transportation infrastructure, but also the human impact this may have on in terms of travel 
disruptions. Wu et al. (2013) did examine the effects of sea level rise and storm surge on transportation 
infrastructure, however, they did not consider traffic volumes and only investigated the effects of extreme 
weather events, namely hurricanes, and not tidal-driven flooding impacts. Mitchell et al. (2013) identified areas 
prone to recurrent flooding in the Hampton Roads region, but it did not look further into the effect on 
transportation infrastructure in particular. 

This study aims to predict the impact of sea level rise, mean high tide, and storm surge from a 100-year 
storm-surge event on Virginia Department of Transportation (VDOT) roads with known traffic volumes in 
Norfolk and Virginia Beach from the year 2000 to 2100. Norfolk and Virginia Beach were selected as a subset 
of the larger Hampton Roads region due to the population, important military interests, and tourist attractions in 
these cities. 
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Methodology 

Study	Area 
Due to the its low-lying geography, Hampton Roads is the second most vulnerable area to sea level rise 

in the United States for its population and size, behind New Orleans (Fears, 2012). This region is the 34th most 
populous metropolitan area, with the 38th largest economy in the United States (hrp.org). It is home to the 
world’s largest naval base, multiple universities, the NASA Langley Research center, and other valuable assets 
These attributes make the region valuable to a wide range of stakeholders, from its 1.7 million inhabitants to the 
U.S. Department of Defense (Kleinosky et al., 2006). 

Roadway 	flood-risk	analysis 
To evaluate future sea level rise risks on transportation infrastructure in Virginia Beach and Norfolk, a 

geographic information system (GIS) was used to perform quantitative and visual analysis. In order for gravity-
driven stormwater infrastructure to continue to work properly, there needs to be sufficient head gradient from 
the street level to the sea level (Grigg, 2012).  If the stormwater infrastructure outlets are below sea level, the 
stormwater infrastructure will not function properly, stormwater will backup within the system, and those 
streets served by the stormwater infrastructure will flood. For this reason, this study assumed roadways below 
sea level to be inundated. 

This study considered three different ways flood water elevation might vary over time: long term 
increases in mean sea level, tidal influences, and storm surge from a 100-year storm surge event. Two different 
flooding scenarios were considered in the study: (i) flooding due to mean high tide and (ii) flooding due to 
storm surge from a 100-year storm surge event that occurred during high tide. Superimposed on both of these 
scenarios were low, intermediate, and high long-term mean sea level rise projections. The methodology was 
divided into two primary objectives. The first objective of the analysis was to calculate the percent of roadway 
flooded over time for the two flooding scenarios. The second objective was to identify critical roadways 
vulnerable to flooding by considering both the roadway’s elevation and the Average Annual Weekday Daily 
Traffic (AAWDT) for the roadway. 

Descriptions	of	Analyzed 	Data 

Transportation	Infrastructure	Data: 
A dataset for Virginia roadways called “Annual Average Daily Traffic volumes with Vehicle 

Classification Data” was obtained from VDOT (http://www.virginiadot.org/info/ct-trafficcounts.asp). These 
data included interstate highway, arterial and primary routes data, and AAWDT for the entire state from the 
years 1985 to 2014. The dataset was clipped to the Hampton Road’s boundary to extract information for only 
the region being studied. 
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Figure	 1. Norfolk AAWDT ranging from low traffic density (light blue) to high traffic density (navy blue) for 
the Norfolk region. Source: Virginia Department of Transportation (VDOT). 
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Figure 2. Virginia Beach AAWDT ranging from low traffic density (light blue) to high traffic density (navy 
blue) for the Virginia Beach region. Source: Virginia Department of Transportation (VDOT). 

Figures 1 and 2 show the AAWDT for Norfolk and Virginia Beach, respectively. Both cities have high 
density roads located near the coast, many of which serve over 100,000 travelers daily. 

Topographic	Data: 
A LiDAR digital elevation model (DEM), with a resolution of 0.76 meters (2.5 feet), was obtained from 

Virginia LiDAR (http://www.virginialidar.com). The DEM was used to estimate the elevations of roadway 
centerlines throughout the study area. 

Storm	Surge and	Tide	Data: 
Annual exceedance probability levels and tidal data from Sewells Point Station, shown in Figure 3, were 

collected from the National Oceanic and Atmospheric Administration. The 1% exceedance probability value is 
the same as 100-year storm surge data used for this study. All data were adjusted to use the North American 
Vertical Datum of 1988 (NAVD88), for the year 2015. 
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Figure 3. Annual Exceedance Probability Levels and Tidal Data from Sewells Point Station(National Oceanic 
and Atmospheric Administration, 2016) 

Sea	Level	Rise	Data: 
Low, intermediate, and high sea level rise scenarios for Southeastern Virginia were obtained from the 

Virginia Institute of Marine Science (VIMS) (Figure 4). The low scenario represents historic rates of sea level 
rise and projections with no acceleration. This scenario was based on the International Panel on Climate Change 
4th Assessment Model, which used conservative assumptions about future emissions and sea level rise. The 
intermediate scenario represents upper-end projections from semi-empirical models. The high scenario 
represents upper-end projections as well as sea level rise contributions from ice-sheet loss and glacial melting. 
Sea level rise in meters was predicted for the years 1992 through 2100 (Virginia Institute of Marine Science, 
2014). These different models highlight the uncertainty in climate change predictions. The historic model 
predicts only 0.49 meters of sea level rise by 2100, while the high scenario predicts 2.3 meters of sea level rise 
by the end of the century. 

Figure 4. Sea Level Rise Scenarios for Southeastern Virginia (Mitchell et al., 2013) 
12 



	
	

	
 

  
 

 
 

  

	

	
	

	
	 	

	
	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	
	 	 	 	

  

	
	

 	
  	

  	
  	

 	
      	

  
  

 	
	

            	
    	

	

	
	

Using the low, intermediate, and high sea level rise quantities shown in Figure 4, the values for the two 
flooding scenarios were calculated: (i) a combination of sea level rise and mean high tide and (ii) a combination 
of sea level rise, mean high tide, and storm surge from a 100-year storm surge event. Table 1 charts the values 
calculated for the intermediate sea level rise scenarios and the range for low to high sea level rise values for 
each year. These values were used to project flooded roadways over time as described in the subsequent 
section. 

Table 1. Predicted Degree of Flooding Above NAVD88 Over Time 

Intermediate SLR +  tide Range Intermediate SLR +  tide Range 
(meters) (meters) + storm surge (meters) (meters) Year 

2000 0.61 0.00 2.96 0.00 

2020 0.76 0.09 3.11 0.09 

2040 1.01 0.24 3.35 0.24 

2060 1.31 0.55 3.66 0.55 

2080 1.74 0.85 4.08 0.85 

2100 2.23 1.31 4.57 1.31 

Projection	 of Flooded	 Roadway over Time 
The effect of sea level rise, mean high tide, and storm surge on VDOT roadways was quantified by 

calculating the percent of roadway that would be inundated due to various sea level rise, tidal, and storm surge 
scenarios. For the first scenario, using data from Figures 3 and 4, the sea level rise and tidal elevation data were 
identified and summed to calculate the predicted elevation of the roadways susceptible to flooding for each 
year. This scenario represents tidal-driven, recurrent flooding (1). 

𝐹𝐹𝐹𝐹𝐹𝐹! = 𝑆𝑆𝑆𝑆𝑆𝑆! + (𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐷𝐷𝐷𝐷)																																															 (1)
𝐹𝐹𝐹𝐹𝐹𝐹! = flood water elevation for ith year (meters)

𝑆𝑆𝑆𝑆𝑆𝑆! = sea level rise for year i (meters) 
𝑀𝑀𝑀𝑀𝑀𝑀 = mean high tide = 0.46 meters 

𝐷𝐷𝐷𝐷 = NAVD88 adjustment = 0.09 meters 

For the second scenario, the storm surge from a 100-year storm surge event was included in addition to 
sea level rise and mean high tide (2). This scenario represented “worst case” flooding due to a 100-year storm 
surge event occurring during high tide. 

𝐹𝐹𝐹𝐹𝐹𝐹! = 𝑆𝑆𝑆𝑆𝑆𝑆! + 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐷𝐷𝐷𝐷 + (𝑆𝑆𝑆𝑆!""!!"#$ + 𝐷𝐷𝐷𝐷) (2)
𝑆𝑆𝑆𝑆!""!!" = 100-year storm surge event = 2.25 meters 

Once flood water elevations were determined, they were compared to the LiDAR topographic dataset 
was to determine the percent of VDOT roadways that would be affected by the sea level rise, tidal, and flooding 
scenarios until the year 2100. 
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Traffic	Vulnerability 
To identify critical roadways, AAWDT (Figures 1 and 2) was mapped along with road elevation for 

VDOT roads in Norfolk and Virginia Beach (Figure 5) to determine how many travelers will be impacted by the 
various flooding elevation scenarios. Three vulnerability levels were identified: (i) roads with low elevation (<3 
m) and low traffic (<30,000 AAWDT), (ii) roads with low elevation (<3 m) and medium traffic 
(30,000<AAWDT<75,000), and (iii) roads with low elevation (<3 m) and high traffic (>75,000 AAWDT). 

Findings 
The results show the large amount of low-lying Virginia Department of Transportation (VDOT) 

roadways in Norfolk and Virginia Beach (Figure 5). Approximately 50% of the heavily-traveled roads only 
reach an elevation of about 3.7 meters. By 2020, current projections suggest that the combined effects of sea 
level rise, high tide, and storm surge from a 100-year storm surge event would result in these roads being 
completely inundated (Table 1). 

Figure 5. Transportation Infrastructure VDOT roadway elevations ranging from higher elevations (green) to 
lower elevations (red) for Norfolk and Virginia Beach. Source: Virginia Department of Transportation (VDOT), 
Virginia LiDAR. 
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Figure 6. Projection of Flooded Roadways Over Time 

Figure 6 shows the effect that flooding will have on roadways in the study region over time. The “Sea 
Level Rise + Mean High Tide” line represents the tidal-driven, recurrent flooding scenario. The error bars on 
the line indicate uncertainty introduced by the different sea level rise scenarios. The results suggest that, by 
2100 and under the high sea level rise projections, approximately 20% of VDOT roadways will be inundated as 
a result of mean high tide and sea level rise. Under the intermediate sea level rise scenario, approximately 10% 
of VDOT roadways will be inundated as a result of mean high tide and sea level rise. By 2060, projections 
suggest that approximately 4% of VDOT roadways will be inundated due to mean high tide and an intermediate 
sea level rise scenario.  

The “Sea Level Rise + Mean High Tide + 100-year Storm” line in Figure 6 represents a scenario with 
the combined effects of sea level rise, mean high tide, and a 100-year storm surge. Results suggest that, by 
2100, this scenario will result in over 80% of VDOT roadways being inundated under the “worst case” sea level 
rise conditions. Under intermediate sea level rise conditions, still more than 70% of VDOT roads will be 
inundated. By 2060, projections suggest that between 40% and 60% of VDOT roadways will be inundated due 
to mean high tide, sea level rise, and storm surge. 
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Figure 7. Identification of Critical Elevation and High Traffic DensityLow elevation VDOT roadways (below 
3.04 meters) are categorized based on AAWDT. Source: Virginia Department of Transportation (VDOT), 
Virginia LiDAR. 

Figure 7 shows the identified critical roadways in the study area with ten notable locations highlighted. 
Bridges were excluded from the analysis, as a “bare-earth” digital elevation model was used, where bridge 
elevations are set below zero. The ten critical locations were compared in terms of the predicted time when the 
roadways would be inundated from (i) sea level rise and mean high tide (SLR + Tide) and (ii) sea level rise, 
mean high tide, and a 100-year storm surge event (SLR + Tide + SS) (Table 2). 
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Table 2. Comparison of Elevation to AAWDT Considering Critical Locations 

Point Location City 

Elevation above 
NAVD88 
(meters) 

Year of Complete Inundation 
SLR + Tide SLR + Tide + SS AAWDT 

1 
Intersection of I-264 
and Kempsville Road Norfolk 2.9 > 2100 Present 198,000 

2 I-64 near Mill Creek Norfolk 1.9 2100 Present 146,000 

3 

Intersection of I-264 
and Brambleton 

Avenue Norfolk 2.0 2100 Present 131,000 

4 
Intersection of I-264 

and Broad Creek Norfolk 1.5 2080 Present 123,000 

I-264 near Eureka Virginia 
5 Park Beach 1.7 2080 Present 111,000 

I-264 Connection 
South of Berkley 

6 Bridge Norfolk 1.1 2060 Present 107,000 

Intersection of I-264 
7 and E Main Street Norfolk 3.0 > 2100 2020 105,000 

Intersection of I-64 
8 and W Bay Avenue Norfolk 2.3 > 2100 Present 93,000 

I-64 W before 
Hampton Roads 

9 Bridge Tunnel Norfolk 2.2 2100 Present 88,000 

Intersection of 
Independence 
Boulevard and Virginia 

10 Garrett Drive Beach 2.6 > 2100 Present 76,000 

The results suggest that all ten locations will be inundated due to the combined effects of sea level rise, 
mean high tide, and storm surge by the year 2020, with nine out of the ten locations already vulnerable to 
flooding under these conditions. Six of the ten locations also face recurrent flooding from sea level rise and 
mean high tide by the end of the century, with one location beginning by 2060, two more by 2080, and three 
more by 2100. Inundation of these roadway sections, given their high traffic volume, could represent significant 
challenges for the region. Efforts to raise roadways with low elevation and high traffic in coming years will be 
important to avoid travel disruptions due to recurrent, tidal-driven flooding. 

Limitations	 of	 Study 
This study assumed that all roads with low elevations would be vulnerable to flooding when sea level 

rises above that roadway’s elevation. In reality, hydrologic connectivity in the region would mean that roads 
further inland may be protected against flooding due to high tides. These roads may still be impacted by rising 
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sea levels due to the associated rise in groundwater tables; however, they will be less susceptible to tidal-driven 
flooding. Future research should investigate hydrologic connectivity in the region and its role in tidally-driven 
flooding of transportation infrastructure. 

The study also assumed that tide levels and storm surge from a 100-year storm surge event will be 
constant as sea levels rise, which may not hold true. Future research should explore the potential variability in 
storm surge and tides as sea levels rise. More sophisticated approaches using hydrodynamic models capable of 
projecting how inland flooding due to storm surge will impact transportation infrastructure would also provide 
more accurate assessments of transportation vulnerability due to extreme events. The hydrodynamics of 
flooding due to storm surge are complex and this work is meant as a first approximation of vulnerable road 
infrastructure that could be improved with more detailed hydrodynamic modeling efforts. 

Even with the assumption of constant storm surge and tidal variance, there is significant uncertainty in 
the sea level rise predictions themselves. Three different scenarios were chosen to represent low, intermediate 
and high predictions of sea level rise in this study to capture this uncertainty. More recent literature on sea level 
rise has suggested that the actual sea level rise may be much higher than previously thought due to various 
factors, including instability of the Antarctic ice sheet. These factors may cause an additional meter of sea level 
rise by the end of the century and up to 15 meters by 2500, nearly doubling prior sea level rise projections 
(DeConto and Pollard, 2016). The uncertainty about sea level rise is a challenging problem for long-term 
planning. Researchers are still advancing knowledge of sea level rise, and it will be critical for planners to 
adjust to new predictions, as the science continues to advance. For this reason, simple elevation-based data of 
transportation assets may be an effective way for planning for future sea-level rise vulnerability given these 
uncertainties. 

Conclusions 
The objectives of this research were to (i) quantify the impacts of sea level rise, mean high tide, and a 

100-year storm surge event on roadways in Virginia Beach and Norfolk; and (ii) identify critical roadway 
sections within Norfolk and Virginia Beach. Under the immediate sea level rise scenario 2060, approximately 
4% of major roads in Virginia Beach and Norfolk are predicted to be regularly flooded due to sea level rise and 
mean high tide. This increases to over 50% of major roads with the addition of a 100-year storm surge. Given a 
high sea level rise scenario, by 2100, more 20% of major roads are predicted to be regularly flooded due to sea 
level rise and mean high tide; this increases to over 80% of major roads with the addition of storm surge. 

Using AAWDT data from VDOT, the most critical roadway sections, meaning those with both low 
elevations and high daily traffic volumes, were identified. Ten sections of roadways in Virginia Beach and 
Norfolk were identified as high traffic roadways (AAWDT > 75,000) and low-lying (elevation < 3 m), making 
them at-risk for flooding due to sea level rise, mean high tide, and storm surge from a 100-year storm surge 
event. Results suggest that nearly all of these road segments are vulnerable to flooding from extreme events 
now (9 out of 10) and all will be vulnerable to flooding from an extreme event by 2020. One of the locations 
will be vulnerable to flooding from high tide events by 2060, two by 2080, and three more by 2100. The results 
suggest that these locations should be high priority areas for infrastructure investments to minimize traffic 
disruptions due to recurrent, tidal-driven flooding. 

Although this study focused on the two cities in the Hampton Roads region of Virginia, in a similar way, 
the methodology could be applied to other coastal areas to identify vulnerable roadway sections. Secondly, this 
study could easily be integrated into a method like the Climate Change Adaptation Tool for Transportation: 
Mid-Atlantic framework (Oswald and McNeil, 2013) to provide municipalities with not only a list of at-risk 
areas of roadway, but also a path forward to plan for future adaptation efforts. 

Recommendations 
The results of this study identify at-risk roadways in Virginia Beach and Norfolk. Specific locations with 

low elevation and high traffic volumes were highlighted. It is recommended that all at-risk roadways and 
especially those identified with high traffic volumes be considered when prioritizing flood mitigation efforts. 
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The results suggest that efforts to reduce flood risk at these locations will be important in minimizing travel 
disruptions due to recurrent, tidal-driven flooding. 
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Problem 
Precipitation events of large magnitude often disrupt the normal activities through disastrous flooding in 

the urban areas. This research addresses two needs put forth by stakeholders in the Hampton Roads region. The 
first need is to update design storms used to design stormwater infrastructure in order to better account for 
climate change impacts. The second need is to better account for the impact of reoccurring flooding due to sea 
level rise on transportation project prioritizations. The frequency and magnitude of the large precipitation 
events are increasing and are expected to be intensified in the coming future due to climate change (Karl and 
Knight, 1998; Osborn et al., 2000; Sen Roy and Balling, 2004; Solomon et al., 2007, Min et al., 2011). Climate 
change is expected to impact severely at urban locations as these locations are the center of human activities. 
The built infrastructure to facilitate human activities are in jeopardy, susceptible to flooding and associated 
damages. 

The geographic location of Hampton Roads, Norfolk and Virginia Beach metropolitan region along the 
Chesapeake Bay and the Atlantic Ocean makes them extremely vulnerable to urban and coastal flooding (Figure 
1). The urban areas in southeastern Virginia experience an average of 1200 mm precipitation each year. The 
record shows a below average precipitation at Norfolk and Hampton Roads, while, an above average 
precipitation at Suffolk and Williamsburg. Within the city limits, the precipitation in the form of rainfall 
frequently exceeds the ability of the land to retain and/or safely discharge them into the ocean. The current 
design of the drainage infrastructure is unable to manage water in the urban system that results in a temporary 
road closure to the loss of homes, property and life. Therefore, there is a prime interest of redeveloping design 
storm to accommodate future climate condition in the planning tool for the urban drainage system of 
southeastern Virginia for the proper management of the flooding occurrences. 

Figure 1: Spatial map of the meteorological stations of the GHCND in the southeastern Virginia. The GHCND 
observation at Langley Air Force Base is considered for Hampton region precipitation analysis. 

23 



	

	
  

 
  

 
 

 

 

 

       
       
         

     
     

     
     

     
       
       

 

 

 

 
   

  

 

 
 

 

 

Approach 
Both meteorological records and downscaled gridded estimates are collected or generated to provide 

annual maximum precipitation in southeastern Virginia. The daily precipitation records are collected from 9 
(nine) stations based on the long-term availability of data from National Climatic Data Center (NCDC) and 2 
(two) of these stations are also considered for sub-daily precipitation records. These stations are listed in Table 
1. The gridded daily estimates of precipitation over the study region are (i) extracted for the daily downscaled 
precipitation from 15 climate models (Table 2), (ii) simulated for the hourly downscaled  precipitation using 
Weather Research and Forecasting (WRF) model. Both extracted and simulated precipitation estimates have the 
same 1/16th (~ 4 km) of a degree spatial resolution. These gridded precipitation estimates are used to provide 
both temporal variation and spatial distribution of the annual maximum events over southeastern Virginia. 

Table 1: List of the in-situ observation station of the Global Historical Climatology Network (GHCND) for 
precipitation trend analysis for the period of 1950~2010 over southeastern Virginia. The italic indicates the 
stations considered for also sub-daily precipitation records. 

Station Name of the stations Elevation Latitude Longitude 
Holland Holland 1 E VA US 0 36.6833 -76.7833 
Suffolk Suffolk Lake Kilby VA US 0 36.7333 -76.6000 
Wallaceton Wallaceton Lake Drummond VA US 0 36.6000 -76.4333 
West Point West point 2 NW VA US 0 37.5167 -76.8167 
Williamsburg Williamsburg 2 N VA US 21 37.2667 -76.7000 
Hampton Langley Air Force base VA US 3 37.0833 -76.3500 
Norfolk Airport Norfolk International Airport VA US 0 36.8833 -76.2000 
Norfolk Norfolk NAS VA US 0 36.9375 -76.2893 
Oceana Oceana NAS VA US 7 36.8333 -76.0333 

The extracted precipitation from the climate models are the downscaled estimates that applied Multivariate 
Adaptive Constructed Analogs (MACA) technique (Abatzoglou, 2013). These data are available for CONUS 
and requires transformation before use. These daily precipitation datasets are available for the period of 1950-
2099 that are useful to evaluate the performance of the models to capture historical period (1950-2005) in 
comparison with observations, while precipitation estimates for the period of 2016-2099 can be used for future 
prediction. The grid cells corresponding to the location of the NCDC observations are used for evaluation of 
precipitation estimates. The performance is measured in terms of percent bias that is calculated from the 
deviation of the annual daily maximum precipitation for corresponding models and locations. These bias can be 
incorporated in the future precipitation estimates in the corresponding models and locations to reduce the 
uncertainty in the future precipitation characteristics for the period of 2016-2099 with two Representative 
Concentration Pathways (RCPs) scenarios, namely RCP4.5 and RCP8.5. 

The simulated hourly precipitation is generated from WRF model with a spatial resolution of 1/16th of a 
degree similar to the extracted climate precipitation resolution. These sub-daily precipitation are generated for 
the period of 1985-2010 and are used to evaluate the performance of the WRF model to capture annual hourly 
maximum precipitation event for the period of 1985-2010. The grid cells corresponding to the location of the 
NCDC observations are used for evaluation of hourly precipitation events. The performance is measured in 
terms of percent bias at 2 locations in the study regions. The calculated bias is applied to the corresponding 
locations and surrounding grid cell to generate bias corrected hourly precipitation estimates. 
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Table 2: List of the climate models of the Coupled Model Intercomparison Project 5 (CMIP5) that are 
downscaled using Multivariate Adaptive Constructed Analogs (MACA) techniques for precipitation trend 
analysis for the period of 1950~2099. 

Model Model 
Country 

Model Agency 

BCC-CSM1-1 China Beijing Climate Center, China Meteorological Administration 
BCC_CSM1-1-m China Beijing Climate Center, China Meteorological Administration 
BNU-ESM China College of Global Change and Earth System Science, Beijing Normal 

University, China 
CanESM2 Canada Canadian Centre for Climate Modeling and Analysis 
CCSM4 USA National Center of Atmospheric Research, USA 
CNRM-CM5 France National Centre of Meteorological Research, France 
CSIRO-Mk3-6-0 Australia Commonwealth Scientific and Industrial Research Organization/Queensland 

Climate Change Centre of Excellence, Australia 
GFDL-ESM2M USA NOAA Geophysical Fluid Dynamics Laboratory, USA 
GFDL-ESM2G USA NOAA Geophysical Fluid Dynamics Laboratory, USA 
INM-CM4 Russia Institute for Numerical Mathematics, Russia 
IPSL-CM5A-LR France Institut Pierre Simon Laplace, France 
IPSL-CM5A-MR France Institut Pierre Simon Laplace, France 
IPSL-CM5B-LR France Institut Pierre Simon Laplace, France 
MIROC5 Japan Atmosphere and Ocean Research Institute (The University of Tokyo), 

National Institute for Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology 

MIROC-ESM Japan Japan Agency for Marine-Earth Science and Technology, Atmosphere and 
Ocean Research Institute (The University of Tokyo), and National Institute 
for Environmental Studies 

Methodology 

Meteorological 	Observations 
The collection of the daily and hourly precipitation data  started with downloading daily precipitation 

records from NCDC for 9 locations for the period of 1950~2010. The quality of the data is controlled using 
quality assurance reviews, including checks for spurious changes in the mean and variance and neighbor checks 
that identify outliers from both a serial and a spatial perspective. 

CMIP5 	Precipitation 	Data 
The climate models-based daily precipitation are collected and transformed into ascii format for each 

grid cells of spatial resolution of 1/16th of a degree. This high-resolution precipitation estimates are used to 
capture historical precipitation events at 9 locations of the meteorological station in the study region with 15 
models for the period of 1950-2005. For the future period of 2016-2099, the daily precipitation of 15 models is 
also collected and transformed for 9 locations for temporal analysis. The climate models are also used for 
spatial distribution analysis for the study region of 16 x 16 grids cells that covers latitude of 36.5° to 37.5° and 
longitude of -75.8° to -76.9° in southeastern Virginia. These 256 cells from each climate model contain daily 
precipitation estimates for the period of 1950-2099 consisting of both historical and future precipitation 
analysis. 
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Figure 2: WRF model domain shows with the inner domain focusing on the study area. 

WRF	 Precipitation Data 
This study has also engaged WRF model with Advanced Research WRF (ARW) version 3.6.1 

(Skamarock and Klemp, 2008) to dynamically downscale the regional climate with North American Regional 
Reanalysis data. This study consists a nested domain centered at 37.916 N and 76.721W. The parent domain 
contains 235 x 235 grid points with 12 km resolution and nested domain contains 226 x 223 grid points with 
1/16th of a degree (4 km) resolution. Both domains include 40 terrain following levels covering most of the 
Eastern United States (Figure 2). The inner domain was centered over the Hampton Roads region as it is the 
focal area for this particular study. The model uses MODIS-derived 20 category land cover and soil texture at 
30 arc second resolution. The WRF model is adopted two-way nested domain with two domains to convert the 
coarse resolution of NARR (32 km) data to high-resolution WRF domain data (1/16th of a degree). The WRF 
model is simulated for the period of 1985 to 2010 and uses adaptive time step option to minimize processing 
time in the Advanced Research Computing (ARC) at Virginia Tech. 

Bias 	Correction 	of	WRF	Precipitation with 	NCDC observations 
The uncertainty generated in the downscaled precipitation of the model are estimated in terms of percent 

bias using hourly observation from NCDC stations at two locations (Table 1, Italic). A quantile–quantile 
adjustment is applied to the simulated precipitation estimates for correction to the downscaled precipitation 
from WRF model (Wood et al. 2004; Reichle and Koster 2004; Amengual et al., 2012). The quantile–quantile 
mapping transformation consists of calculating the changes quantile by quantile in the Cumulative Distribution 
Function (CDF) of hourly precipitation between 1985-2010 period using in-situ observation and WRF-based 
precipitation. 

Findings 

Annual	 Daily	 Maximum Precipitation 
Figure 3 demonstrates the annual daily maximum precipitation trend using daily in-situ observations at 

the Hampton Roads region. On average, the precipitation trend in the Hampton Roads region shows a 
decreasing rate by mm/time. Likewise, these estimates of annual daily maximum precipitation facilitate 
detecting trend for other individual grid cells. Similar analysis was done for all of the stations. 
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Figure 3: Variability in the annual daily maximum precipitation over the historical period of 1950-2010 at 
Hampton (Blue line; red line shows the annual trends). The bar represents average annual daily estimates of 
precipitation of largest 5 events. 

Comparison 	of	Annual	Daily	Maximum 	Precipitation 	between 	Observation & 	CMIP5-MACA-based 
Estimates 

The comparison of in-situ daily observation of annual daily maximum precipitation provides the basis 
for estimating uncertainty generated by the model. Figure 4 shows such a comparison among the historical 
observation, maximum, and minimum estimates of annual daily maximum precipitation by the 15 climate 
models (shaded area) for Hampton region. The temporal variation of precipitation of all the models remains 
within this area. For any individual model, the comparison thus provides the percent bias that is captured at 
certain locations. 

Figure 4: Variability in the annual daily maximum precipitation between observation and CMIP5-MACA 
based simulation over the historical period of 1950-2005 at Hampton. The shaded area represents the 
uncertainty produced by the MACA-downscaled estimates. 

Percent	Bias	 Estimates	of	the	Climate	Models 
The computation of the percent bias for each 9 locations for 15 climate models is shown in Table 3. The 

matrix when evaluated for each model, demonstrates in favor of GFDL-ESM2M and BCC-CSM1-1-m models 
and compute the average percent bias of 10.6 and 11.6, respectively in the study region. These estimates are 
moderate for some models like BNU-ESM, CanESM2, CNRM-CM5, INM-CM4, IPSL-CM5A-LR, and IPSL-
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CM5A-MR. The rest of the models show high percent bias corresponding to others. Location-wise, the 
Hampton (Langley) region shows the lowest bias when biases are considered from all 15 models. This estimate 
of percent bias provides an opportunity to estimate uncertainty in the annual daily maximum precipitation for 
both models and locations. 

Table 3: Estimates of the percent bias (%) of the precipitation annual daily maximum precipitation of the 
climate models at 9 (nine) locations for the period of 1950~2005. 

Models Holland Suffolk Wallaceton West Point Williamsburg Hampton (Langley) Norfolk Airport Norfolk Oce ana Average 
BCC-
CSM1-1 35.9 2.1 24.6 26.8 13.7 0.3 11.7 18.3 12.7 16.2 
BCC_CS 
M1-1-m 29.5 0.3 34.2 14.4 1.5 3.6 3.7 7.8 9.0 11.6 
BNU-
ESM 25.8 2.1 33.5 10.6 3.4 2.6 12.2 16.4 17.6 13.8 
CanESM2 26.0 3.1 24.4 15.6 13.9 0.1 16.2 21.2 19.4 15.5 
CCSM4 43.6 1.6 45.1 30.6 22.9 5.7 15.3 20.4 24.7 23.3 
CNRM-
CM5 36.9 11.0 29.6 24.6 12.8 4.4 6.9 11.0 14.4 16.8 
CSIRO-
Mk3-6-0 33.6 0.4 32.4 27.8 16.4 7.4 15.7 20.6 17.8 19.1 
GFDL-
ESM2G 29.6 2.5 29.1 39.7 6.7 0.2 14.4 20.7 22.8 18.4 
GFDL-
ESM2M 15.0 20.8 10.4 21.8 5.8 6.5 -0.6 4.4 11.4 10.6 
INM-
CM4 28.5 3.9 35.0 24.9 14.3 2.6 7.9 13.7 13.1 16.0 
IPSL-
CM5A-
LR 39.5 0.3 26.8 32.9 8.9 1.2 4.2 7.5 7.0 14.3 
IPSL-
CM5A-
MR 31.1 5.3 32.3 27.0 10.0 1.9 8.9 10.7 11.1 15.4 
IPSL-
CM5B-
LR 39.7 8.4 41.0 32.0 16.4 0.1 14.7 19.9 19.4 21.3 
MIROC5 35.6 7.1 27.9 20.5 15.5 3.2 21.3 23.9 30.7 20.6 
MIROC-
ESM 31.4 5.0 30.1 18.9 8.3 10.1 7.8 11.9 11.2 15.0 

Percent	Bias	 Estimates	of	 the	WRF 	Model 
The computation of the WRF model-based percent bias for 2 locations is shown in Table 4. It shows that 

hourly precipitation simulation by the WRF model underestimates the annual hourly maximum precipitation in 
comparison to NCDC observations at these locations. These biases are used to adjust the gridded precipitation 
generated by the WRF model for the period of 1985-2010 over the study area. 

Table 4: Estimates of the percent bias (%) of the precipitation annual hourly maximum precipitation of the 
WRF model for the period of 1985-2010. 

Models Williamsburg Norfolk Airport Average 
WRF -21 -13.1 -17.1 
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Future	Prediction 	of	the	Annual	Maximum 	Precipitation 
The annual daily maximum precipitation for the future period (2016-2099) provides precipitation 

frequency and magnitude at the Hampton Roads region (Figure 5). The percent bias that is estimated from these 
models and for locations can be incorporated into design calculations to decrease uncertainty. For this study, we 
have not included the percent bias for the models in this location. 

Figure 5: Variability in the future annual daily maximum precipitation for the period of 2016-2099 at Hampton 
using both RCP4.5 and RCP8.5 scenarios. The grey and blue shaded areas represent the uncertainty predicted 
by RCP4.5 and RCP8.5 scenarios, respectively. 

Spatial	Distribution 	of	Annual	Daily	Maximum 	Precipitation in 	the	Future 
Figures 5 shows the distribution of annual daily maximum precipitation extracted from GFDL-ESM2M 

precipitation simulation for the period of 2016~2099 over southeastern Virginia. The distribution clearly shows 
the zones of high and low precipitation. It is also possible to estimate the increase or decrease in precipitation 
magnitude from these gridded precipitation data for each of the pixels in the domain. Similar to the previous 
analysis, the percent bias was not included in this distribution, however, with the bias estimates the uncertainty 
can be reduced. 
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Figure 6: Spatial distribution of future precipitation using RCP scenarios (RCP 4.5, top-left and RCP 8.5, top-
right) of the GFDL-ESM-2M model for the period of 2016-2099. The bottom panel represents changes in 
maximum daily precipitation simulated by the model in the corresponding scenarios. 

Conclusions 
The analysis of the daily and hourly observations of precipitation at 9 locations in southeastern Virginia 

provides the foundation for understanding the extreme trends in the region for the period of 1950-2005. 
However, these estimates are not sufficient to characterize the exact trends in the region. This is due to the fact 
that either these stations are located outside the urban center, far away from each other, and insufficient quality 
of the data. In addition, instrumentation and manual intervention often complicate conclusive precipitation 
characteristics analysis. Besides, the observation data has the limitation of forecasting future scenarios that are 
necessary for infrastructure design and maintaining human activities. 

Gridded precipitation products are developed and used to analyze distributed precipitation 
characteristics. These products overcome the limitation of in-situ observations in many aspects and provide 
precipitation estimates for areas that lack precipitation estimates. The gridded daily precipitation of the climate 
models provides geographically a more complete evaluation of the region. The comparison of the annual daily 
maximum precipitation of the model with NCDC observation provided evidence of bias in the climate models 
and WRF model outputs that can be integrated in the precipitation estimates to reduce the uncertainty. 
Similarly, when annual hourly maximum precipitation estimates from the WRF model were compared with 
NCDC observations, the percent bias derived can be used for the design calculations. However, the reduction in 
the uncertainty may not be adequate due to the bias correction based on percent bias only from two locations. 
This uncertainty can be further reduced by comparing precipitation estimates with more in-situ observations. 
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Processed Data	 Available 

Table 5: List of the available data for the precipitation characteristics analysis in southeastern Virginia. 

Model/Observation NCDC 
Observation 

Climate Models 
(CMIP5- MACA) 

WRF Model 

Status No Bias 
Correction 

No Bias 
Correction 

No Bias 
Correction 

Bias 
Corrected 

Period 1950-2010 1950-2005 2016-2099 1985-2010 1985-2010 
Temporal 
Resolution 

Daily /Hourly Daily Daily Hourly Hourly 

Spatial Resolution 1/16th of a 
degree 

1/16th of a 
degree 

1/16th of a 
degree 

1/16th of a 
degree 

Locations/No. of 
Grid Cells 

9 (Daily) 
2 (Hourly) 

16 x 16 16 x 16 16 x 16 16 x 16 
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Problem 
As	sea	levels	rise,	coastal	cities	are	becoming	increasingly	vulnerable	to	both	severe	and	minor flooding	
(Nicholls	and	Cazenave,	2010).	Extreme	events,	such	as	hurricanes	and	tropical	storms,	have	caused	
severe	damage,	costing	major	coastal	cities	billions	of	dollars	and	 thousands	of	lives	(Kates	et	al.,	2006;	
Galarneau	et	al.,	2013).	In	addition	to	extreme,	high	return-period	events,	small	return-period 	rainfall	 
events	can	also	cause	flooding	in	coastal 	cities.	These	cities	typically	have	very	low	topographic	relief,	a	
high	water	table,	and	tidal	influences	which	combine	to	make	drainage	problematic	(Titus	et	al., 1987).	
The	frequency	of	these	lower	return	period	flood	occurrences	has	increased	in	coastal 	cities	 in	 recent 
years	(Ezer	and	Atkinson,	2014;	Sweet	et	al.,	2014).	These	flooding	events,	while	less	dramatic,	
nevertheless	can	have	significant	economic	and	social	costs	(Suarez	et	al.,	2005).

To	understand	and	accurately	forecast 	flooding	at 	the	urban	watershed	 scale, spatially	 and	 tem-
porally	detailed	rainfall	data	are	needed	(Smith	et	al.,	2007)	 but	usually	unavailable	(Hill,	2015).	The	
typical	urban	watershed	is	small	in	area	and	has	a	large	proportion	of	impervious	surfaces.		This	results	
in	a short 	runoff	response	time	(Hall,	1984;	Fletcher	et	al.,	2013).	Typically,	neither	rain	gauge	networks	
nor	weather	radar	can	provide	rainfall	measurements	at	spatial	 and	temporal	resolutions	needed	to	
make	relevant	urban	flood	forecasts	(Hill	et	al.,	2014);	the	traditional	rain	gauge 	networks 	are 	typically	 
too	coarse	spatially	to	provide	such	detailed	information	(Seo, 1998).	Weather	radar	can	produce	
measurements	with	much	higher	spatial	resolutions;	however,	weather	radar	measurements	are	indirect	
requiring an empirically-derived	relationship	between	reflectivity	from	rain	clouds	and	 actual	rainfall	on	
the 	ground 	(Smith	and	Krajewski,	1993)	and	are therefore	inherently	uncertain	to	some	degree.	Efforts	
have	been	taken	to	blend	the	two	data 	sources	(Velasco-Forero	 et 	al.,	2009;	Seo,	1998;	Sun	et 	al.,	2000)	 
but	spatially 	detailed and 	accurate 	rainfall	data	are 	usually 	difficult	to 	obtain	(Hill	et	al.,	2014).		To 
increase	the	spatial	coverage	of	rainfall	estimation,	less	traditional 	technologies	such	as	measuring	signal	
attenuation	between	cell	phone	towers	(Overeem	et	al.,	2013;	Zinevich	et	al.,	2008)	and	using	simple,	
more	widespread	binary	rainfall	sensors	(Hill,	2015)	have	recently	been evaluated.	

Although	it	is	generally	accepted	that	spatially	and	temporally 	dense	measurements	are	needed	to	 
capture	storm	events	relevant	to	urban	hydrology,	the	degree	of	spatial	and	temporal	density	is
uncertain.		This has 	been	studied 	using	both	rain	gauge	networks 	(Pedersen	et	al.,	2010; 	Serinaldi,	2008;
Jensen and	 Pedersen, 2005)	and	weather	radar	(Krajewski	et	al.,	2003;	Smith	et	al.,	2007).	Ciach	and	
Krajewski	(2006)	used	25	rain	gauges	stations	in	a	3km	X	3km	grid	to	observe	small-scale	 spatial and	
temporal	rainfall	variation.		In	their 	findings,	rainfall	exhibited	high	spatial	variability	with 	correlation	 
coefficients	decreasing	to	below	0.8	between	gauges	at	a	four	kilometer	separation	distance	at	a	15	
minute	time	step;	the	correlation	coefficients	were	lower	at	a	 5	minute	time	step.	Emmanuel	et	al.		(2012)	
analyzed 	rainfall radar	images	finding	rainfall	patterns	to	be	very	spatially	heterogeneous	with	
decorrelation	distances	as	low	as	5	km.	Berne	et	al.	(2004)	used	geostatistcs	with	rain	gauge	and	an	X-
Band	weather	radar	data	to	suggest	a	simple	empirical	relationship	between	watershed	area	and	the	
corresponding	necessary	temporal	resolution	(Equation	1);	they	 then	related	the	temporal	resolution	to	
the 	needed 	spatial	resolution	(Equation	2).	 

∆t	= 	0.75S0.3 (1)
∆r	 =	 1.5√∆t (2) 

Approach
The	above	studies	focused	on	 describing	the	temporal	and	spatial	characteristics	of	rainfall 	in	a	small-
scale	 or	 urban	 context but they	 did	 not explore	 what effect the	 ability	 to	 characterize	 rainfall events	
would	have	on	rainfall	estimation	for	urban	watersheds.	Researchers	who	have	 considered	the	impact	of	
spatial	or	temporal	heterogeneity	on	watersheds	did	so	on	a	much	larger	scale	than	what	is	considered	
here	(Maskey	et	al.,	2004;	Smith	et	al.,	2007;	Segond	et	al.,	2007).		The	objective	of	this	paper is	to	better	 
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understand 	how	rain	gauge	proximity	affects	rainfall	estimation	for	small	(<	1km2)	problematic	urban	
watersheds	in	Virginia 	Beach,	VA.	 

Methodology 
Study	area 	and 	focus	watersheds 
The	study	area	is	the	more	populated	portion	of	the	City	of	Virginia	Beach	(CVB),	Virginia.	Virginia Beach	
is	the	largest	geographically	(645	sq.			km)	and	most	populous	 city	(pop.			450,980)	in	the	commonwealth	
of	Virginia 	(US	Census).	Most 	of	the	residents	of	Virginia 	Beach	live	in	the	northern	portion	of	the	city.	
The	study	area,	shown	in	Figure 1,	is	370	sq.	km,	57%	of	the	total	city	area,	and	roughly	the	northern	half	
of	the	city.

Specific	intersections	with	recurrent	flooding	problems	were	provided	by	city	engineers.	 The	
drainage	 area corresponding	 to	 each	 of	 these	 points	 was	 delineated	 using	 a	1	m	X	1	m	resolution	digital	
elevation	model	(DEM).	The	resulting watersheds 	are 	shown	in	Figure 2 and 	their 	characteristics 	are 
given	in	Table	1.		For	each	watershed	the	percent	imperviousness	was	obtained	from	the	National	Land	
Cover 	Dataset	2011 and 	the	percent	slopes	were	calculated	from	the	DEM. 

Figure	1:	 Study	 area 
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Figure	2: Focus	 watersheds 

Table	1:	 Focus	 watershed 	areas 

ID Description Area 
(km2) 

%	 
Impervious 

Ave.	 % 
Slope 

WS-1 Shore Drive and Great Neck Road 0.76 59 4.7 

WS-2 Shore Drive and Red Tide Road 0.15 69 0.6 

WS-3 Ocean View Ave and Mortons Road 0.02 43 5.3 

WS-4 S. Rosemont and S. Plaza	 Trail 0.13 61 3.9 

WS-5 S. Rosemont and	 Clubhouse 0.26 26 4.4 

WS-6 21st and	 Baltic 0.08 46 3.3 

WS-7 Shore Drive and Kendall Street 0.69 9 11 
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Rainfall Data 

Precipitation data	were	obtained	from	three	different	sources:	The	CVB,	Hampton	Roads	Sanitation	
District (HRSD), and	 Weather	 Underground	 (WU). The	 20	 dates with	 the	 highest daily	 precipitation
measurements	from	the	Oceana	Naval	Air	Station	were	used	in	the 	analysis.	Figure	3	shows	the	total 	daily	 
rainfall and	 the	 standard	 deviation for	 the	 20	 days	 analyzed. 

Figure	3:	Average	daily	cumulative	rainfall	depth	and	standard	deviations	of	selected	days 

The	city	of	Virginia 	Beach	in	the	past 	five	years	has	installed	a rain gauge	 network consisting of	
fourteen	gauges.	Precipitation	data	from	the	ten	gauges	within	 the	study	area	were	obtained	for	the	20	
days	analyzed.	These	data	were	recorded	at	five	minute	intervals.

The	HRSD	has	a 	network 	of	over	50	rain	gauges	over	the Hampton	Roads	area,	12	of	which	are	
within	the	study	area.		The	data	from	these	gauges	are	quality	 controlled	by	the	HRSD.	The	
measurements	were	recorded	in	15	minute	intervals. 

Crowd-sourced	data	were	obtained	from	WU	(http://www.wunderground.com/),	using	their web	 
API.	In	addition	to	the	12,000	National	Weather	Service	and	Public	Stations	used	by	WU,	more	than	
100,000	personal	weather	stations	contribute	to	the	site.			These	stations	are	purchased	and	maintained	
by 	individuals.	In	Virginia	Beach 	for 	the 20	days	examined,	there	were	between	7	and	21	WU	personal	 
weather 	stations 	that	reported 	rainfall	values; 	that	corresponds to 	a	70-210%	increase	in	the	number	of	 
gauges	in	the	study	area.	The	temporal	resolution	amongst	these 	stations	was	variable	with	an	 average 	of 
a	6.2	minute	measurement	interval.	Increased	spatial	coverage	has	obvious	benefits	in	better	
understanding	spatially	heterogeneous 	precipitation	events.	However,	because	the	data	are	crowd-
sourced	with	minimal	quality	control,	their	validity	is	 uncertain.	The	process 	for 	screening	this 	dataset	to	 
remove	invalid	observations	is	described	in	the	following	section. 

Analysis 

Quality	Controlling	of	WU	Data 

The	following	procedure	was	used	to	quality	control 	the	WU	rainfall 	observations.	First,	if	a stations	
recorded	a	daily	rainfall	total	of	zero	for	any	of	the	20	days	 analyzed,	all	values	from	that	gauge	for	that	
day	were	disregarded.		This	assumes	that	if	a	gauge	does	not	record	any	rainfall	for one	day,	that	gauge	 
was 	not	working	that	day.	Second,	anomalous	measurements	at	the	15	minute	time	step	were	tallied	as	
follows.	At	each	WU	station,	the	inverse	distance	weighting	(IDW)	method	was	used	to	predict	the	rainfall	 
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based	on	its	neighboring	stations	maintained	by	the	CVB	and	the	HRSD.	A	minimum	of three 	stations,	and
all	within	5000	m	were	used	for	the	estimation.	For	each	15	minute	time	step,	the	IDW-based,	estimated	
value	was	compared	to	the	value	recorded	by	the	WU	station.	If	 the	predicted	value	was	three	or	more	
standard	deviations	from	the	recorded	value,	that	measurement	was	flagged	as	an	outlier.	The	
measurement	was	also	flagged	as	an	outlier	if	the	predicted	value	was	greater	than	10	mm	and	the	
recorded	value	was	zero.		The	total 	percentage	of	outliers	measured	at	each	station	was	measured. Then	
the	percentage	of	outliers	compared	to	all	measurements	at	each station	was	calculated.		The	process	was	
also	performed	with	the	CVB	and	HRSD	stations	as	well.	As	a	baseline	for	comparison,	the	percentage	of	
outliers	for	the	WU	stations	were	compared	 to	 those	 of	 the	 CVB and	 HRSD	 stations.	 In	 this	 way, unreliable	
WU 	stations 	were 	identified. 

Exploratory	Data	Analysis 

To	gain	a 	broad	picture	of	the	spatial 	heterogeneity	of	the	collected	rainfall 	data,	rainfall 	depths	for	all
stations	and	all	time	 scales	(daily,	hourly,	and	15	minute)	were	plotted.	The	standard	deviations	of	the	
rainfall	depths	were	compared	to the mean	at	daily,	hourly,	and	15	minute	time	scales. 

Rainfall	interpolation	using	Kriging 

Ordinary	Kriging	was 	used 	to	quantify	the	importance	of	rain	gauge	proximity	in	estimating	rainfall	depth	
over	the	seven	focus	watersheds.		It	would	have	preferable	to	use	Kriging	with	external	drift	(Kebaili	
Bargaoui and 	Chebbi,	2009),	however this 	technique 	requires 	another 	related 	but	independent	variable
such	 as	 elevation	 (Goovaerts,	 2000).	 In	 this	 case,	 since	 the	 study	 area is	 located	 on	 a coastal plane,	 the	
elevation	is	effectively	constant 	over	the	study	area 	so	Ordinary	Kriging	was	chosen.		 A	spherical	model	 
was 	used 	for	the	Kriging	semi-variograms.		The	model	parameters	(sill	and	range)	were	automatically
optimized	using	the	RGeostats	package	in	R	(Renard	et	al.,	2015).	Those	parameters	were	then	used	in	
ArcGIS	to	predict	rainfall	throughout	the	study	area	for	each	time	period.	 

Rainfall	estimation	without	local information 

To	quantify	the	role	of	local 	rain	gauges	in	area-averaged	precipitation	estimates	for	the	seven	focus	
watersheds,	the	rainfall	was	estimated	with	and	then	without	nearby	gauging	stations.		The	nearest	HRSD	
or	CVB 	gauge	and	any	nearer	WU	gauges	were	considered	’nearby’.	The	estimated	 rainfall	and	variance	
with	nearby	stations	were	computed	and	averaged	over	the	focus	 watersheds.		These	same	values	were	
then	estimated	without	the	nearby	stations	and	the	results	were 	compared to 	the 	results 	of 	the 
estimation	with	the	nearby	stations.	The	number	of	gauges	removed	for	each	focus	watershed	and	the	
average	distance	of	the	removed	gauges	are	shown	in	Table	2. 

Rainfall	estimation	without	increasingly	distant	information 

A	second	analysis	was	performed	to	quantify	what	effect	increasing	distance	to	the	nearest	rain	gauge	has	
on	rainfall	estimation.	For	each	focus	watershed,	first	the	nearest	rain	gauge	from	the	watershed	centroid	 
was 	excluded and 	the 	rainfall	and 	variance 	were 	estimated.		Then	the 	next	closest	station	was 	excluded as 
well	and	the	rainfall	and	variance	were	again	estimated.		This	 pattern	was	followed	until	the	12	nearest	
rain	gauges	to	the	watershed	centroid	were	excluded.		The	incremental	change	in	the	rainfall	estimation	
and	variance	compared	to	the	distance	of	the	furthest	excluded	 rain	gauge	was	plotted. 

40 



	
	

	
	

	
	

 
 

  
   
   
   
   
   
   
   

	
	

	
	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	
	 	

Table	2:	Gauges	removed	in	Kriging	analysis 

Area Num. gauges Min. distance of removed 
(km2) removed gauges (m) 
0.76 3 318 
0.15 3 153 
0.02 1 1266 
0.13 2 458 
0.26 2 380 
0.08 1 625 
0.69 2 2645 

Findings 
Quality	Control	Results 

The	results	of	the	quality	control 	procedure	of	the	WU	stations	are	shown	in	Figure	4.	Eight 	of	the	top	ten	
stations	in	terms	of	percentage	of	outliers	were	WU	stations.	The	WU	 stations	 had	 a higher	 average	
percentage	of	outliers	overall	(Table	3).		Only	one	stood	out	statistically:		”KVAVIRGI52”,	which	was	3.6	
standard	deviations	from	the	mean	percent	number	of	observations	classified	as	outliers.	This	station	
therefore was 	excluded	from	the	analysis,	but	all	other	stations	were	kept. 

Figure	4:	 Percent of	 outliers	 for	 each	 station 
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Table	3:	 Percentage	 of	 outliers	 for	 each	 data source 

Data Source Average Percentage of Outliers (%) 
CVB 4.5 
HRSD 6.9 
WU 8.6 

Exploratory	Analysis	Results 

Figure	 5	 shows	 the	 daily	 rainfall depths	 for	 each	 station across	 the	 study	 area. There	are	 clear	 
differences	in	rainfall	magnitude	and	spatial	variation	between 	dates.		For	example,	considering	the	four	
daily	 total rainfall for	 the	 dates	 in	 the	 third	 row of	 Figure	 5	 (2014-12-24,	 2015-04-14,	 2015-06-02,
2015-06-24), it 	is	clear	visually	that 	the	daily	rainfall 	on	2015-06-02	is	more	spatially	heterogeneous	
than	the	other	dates.		The	data	in	Table	5	confirms	this	quantitatively. The	four	daily	totals	were	quite	
similar:		36.2,	32.6,	34.3,	and	31.8	mm	respectively.		However,	their	standard	deviations	are	quite	
dissimilar:	the	standard	deviation	for	2015-06-02	is	23.9	mm	while	the	next	highest	is	11.0	mm	on	2015-
04-14,	 less	 than	 half.		The	spatial	variation	seen	visually	in	Figure	5	may	best	 be	explained	quantitatively	
with	the	standard	deviation	to	mean	ratio,	or	coefficient	of	variation	(CV).	Contrasting	the	plots	of	two	
dates	 with	 the	 lowest CV,	 2014-04-15	 (0.18),	 and	 the	 highest	CV,	2015-08-20	 (0.85)	 (Table	 5),	 the	 spatial
uniformity	on	2014-04-15	 and	 the	 spatial non-uniformity	on	2015-08-20	 are	 clearly	 seen.

Although	for	a	daily	time	step	the	rainfall	can	be	quite	spatially	uniform,	when	considering	a	
shorter	time	step,	the	spatial	variation	often	is	much	higher;	the	CV for	the	15	minute	and	hourly	time	
steps	was	on	average	at	least	four	times	the	CV of	the	daily	time	step	(Table	4).		Even	the	date	with	the	
smallest	CV 	for	the	daily	time	step,	2014-04-15	 (0.18),	 shows	 quite	 variable	rainfall	amounts	across	
stations	 (CV	 up to	 0.65	 at 11:15:00)	 when	 considering	 the	 15-min	time	step	(Figure
6).		This	variability	on	smaller	time	steps	is	important	to	consider	in	an	urban	environment	where	highly	
impervious	watershed	response	times	are	often	less	than	one	hour.	The	uncertainty	caused	by	this	
variation	can	result 	in	inaccurate	predictions	which	would	cost 	convenience	if	false-positive	and 
potentially	safety	if 	false-negative. 

Table	4:	Average	CV for	the	time	steps	examined 

Time scale Average CV 
15 minute 2.1 
Hourly 2.0 
Daily 0.5 

Rainfall estimation 	without	local 	information 

The	results	of	the	rainfall	estimation	without	local	information	 are	summarized	in	Figure	7	and	8.	These	
figures	explain	the	significant	role	that	the	local	gauging	stations	had	on	the	rainfall	estimation.	7	shows	
the 	average 	increase 	in	variance 	that	occurs 	in	each 	watershed 	when	the 	nearby 	gauging	stations 	are 
excluded	from	the	rainfall	estimation.	 For	most	of	the	watersheds,	the	variance	increases	by	more	than
100%	and	generally,	the	increase	corresponds	to	the	distance	from	the	watershed	centroid	to	the	nearest	
excluded	gauge	(see	2).		These	values	vary	little	between	time	steps.		The	variance	is	a measurement	of	
uncertainty	and	is	related	to	the	magnitude	of	the	rainfall	estimation.	Therefore,	since	the	variance	
magnitude	relates	to	the	magnitude	of	the	rainfall	estimation,	 it	follows	that	the	percent	increase	will	be	
very	similar	across	time	steps. 
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Figure	5:	 Daily	 rainfall values	 at each	 station 

Figure	6:	 Rainfall values	 at 15-min	time	step	for	2014-04-15	a	storm	with	low	spatial	variability	on	a	
daily	time	step 
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Table	5:	Summary	data	for	daily	 rainfall
Date Mean (mm) Standard Dev. (mm) CV 

7/2/2013 25.1 9.2 0.36 

10/9/2013 68.8 19.9 0.29 

1/11/2014 43.7 10.1 0.23 

2/13/2014 28 7.7 0.28 

4/15/2014 33.5 6.1 0.18 

4/25/2014 24.2 7.1 0.29 

7/10/2014 58.5 18.1 0.31 

8/18/2014 31.6 16.3 0.51 

9/8/2014 84.7 30.9 0.36 

9/9/2014 33.1 10.5 0.32 

9/13/2014 13.8 10.1 0.73 

11/26/2014 39.3 10.6 0.27 

12/24/2014 36.2 8.9 0.25 

4/14/2015 32.6 11 0.34 

6/2/2015 34.3 23.9 0.7 

6/24/2015 31.8 10.8 0.34 

8/7/2015 15 12.4 0.82 

8/20/2015 20.4 17.3 0.85 

9/30/2015 17.8 6.9 0.39 

10/2/2015 61.5 19.8 0.32 

Figure	8	shows	the	average	absolute	difference	in	rainfall	estimation	when	the	nearby	stations	are	
excluded.		On	average	the	percent	difference	in	rainfall	estimation	for	the	15	minute	time	step	was	49%	
with 	a	 maximum	of	72%	for	WS-2.		The	average	absolute	difference	in	rainfall	estimation	was	 0.34	mm.	
The	maximum	difference	in	rainfall	estimation	was	24.5	mm	at	WS-6.	The	intensity	of	this	15	minute	time	
period	(98mm/hr)	closely	corresponds	to	a	2-year	design	storm	of	the	neighboring	city	of	Norfolk	
(corresponding	information	for	Virginia	Beach	was	not	provided).		This	illustrates the 	need 	for 	local	 
information.	The	rain	gauging	station	excluded	from	the	analysis	in	this	case	was	625m	from	the	centroid	
of	WS-6	 and	the	difference	for	that	one	15	minute	time	step	was	the	difference	between	estimating	a	2-
year	storm	intensity	and	not.	This	is	a	significant	difference	 and	would	almost	certainly	affect	the	in	flood	
forecasting	 for	 this	 area. 

Rainfall estimation 	without	increasingly	distant	information 

Figures	9	and	10	show	how	the	variance	and	estimated	rainfall	vary	with	increasing	distance	to	the	
excluded	stations.	The	greatest 	change	in	these	results	occurs	within	1k m.	In	Figure	9, each	of	the	points	
with	the	maximum	distance	of	the	removed	gauges	of	less	than	1	 km	had	a	percent	change	in	rainfall	
between	20	and	60%.		This	result	suggests	that	rainfall	measurements	within	1	 km	can	make	a	significant	
difference	in	areal	rainfall	estimation.		The	scatter	points	 generally	trend	downward	as	stations	further
away	from	the	watershed	centroid	have	a	smaller percent	impact	on	the	areal	rainfall	estimation.		In	a	
similar,	but	more	definite	way,	Figure	10	shows	how	variance	changes	with	increasing	the	distance	of	
removed stations.		The	variance	decreases	drastically	as	the	maximum	distance	of	removed gauges	
increases	from	0	to	1.5 km		and	is	 effectively	 negligible	 by	 3.5 m. Therefore,	in	this	study	area,	on	 
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average,	to 	appreciably	increase 	the 	certainty	of 	rainfall	estimation,	a	new	rain	gauge	must	be	within	3.5 
km	and would 	preferably be 	within	1 km. 

Figure	7:	 Average	percent	increase	in	variance	without	’local’	data 

Figure	8:	 Average	percent	difference	in	rainfall	estimation	from	Kriging	 without	’local’	data 

Figure	9:	Percent	change	in	variance	and	percent	difference	in	rainfall 	estimations	compared	to	dis-
tance	from	watershed	centroid	to	excluded	measurement	stations	 at	15-minute	time	scale 
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Figure	10. Percent	change	in	variance	and	percent	difference	in	rainfall	estimations	compared	to	
distance	from	watershed	centroid	to	excluded	measurement	stations	at	15-minute	time	scale 

Conclusions 
The	objective	of	this	 research	was	to	quantify	how	the	proximity	of rain	gauges	to	problem	watersheds	in	
Virginia Beach,	VA impacted	the	areal-average	rainfall	estimated	for	the	watersheds. Rainfall	data	from	
three 	different	sources,	the 	City 	of 	Virginia	Beach,	the	Hampton	Roads	Sanitation	District,	and	Weather	 
Underground, were 	used 	for 	the 	analysis.		The 	rainfall	data	 used were	from	 the 20	 days over	a 	3	year	 
period 	with	the	highest	rainfall	totals.	In	total, 44	 rain	 gauges	 were	 used in	the	analysis.	The	WU	data	 
were 	quality controlled	on	a	 station-by-station basis resulting	in	 one	station being excluded	from	the	
analysis.	Kriging	was	performed	to	quantify	the	effect	of	nearby	stations	on	the	rainfall	estimation	for	
seven	problem	watersheds.		The	results	indicated	that	rainfall	 estimations	changed	on	average	by about	
50%	 across	all 	the	watersheds	 at a 15-minute	time	scale	when the 	nearby 	stations were excluded.	For	 
one	of	the watersheds, the	highest	average	change	in	rainfall	estimation was 	above 	70%	 at a 15-minute	 
time	step and the	largest	difference	in	rainfall	estimation	 was 24.5	mm over	15	minutes.		Differences	of	
this	magnitude	at	a	15-minute	time	scale	could	drastically	affect	flood	forecasts	for	 these	small,	flashy,	
urban	watersheds.	Analysis	was	also	performed	to	assess	the	effect	on	rainfall	estimation	from	
increasingly distant rain	 gauges from the 	watershed 	centroid.	The 	results of	this	analysis	 suggest that a	
rain gauge	 should	be	within	1	km	and	 preferable within 500 m	 of the centroid	 of a	problem	 watershed in	
order	to	 accurately	predict	rainfall	falling	within	that	watershed 	on	a	15-minute	time	step.	 While 	the 
research	in	this	paper	was	specific	to	Virginia	Beach,	the	results	may	have	application	to	watersheds in	 
other	cities	with	similar	climatic	and	geographic	characteristics. 

Recommendations 
In	the	study	area, to	best 	capture	rainfall on	a 	15-minute	time	step,	 it	is	recommended	that	 a	rain	gauge
should	 be	 placed	 within 500	m	of	the	flood	prone	area.	Rain	gauges	greater	than	1	km	from	the	problem	
area	may	not	accurately	represent 	the	true	 rain falling at that area on a 15-minute	time	step.	 This	could	 
lead to 	inaccurate 	forecasts 	within	flood 	warning	applications. 
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